Combining tCS and EEG

Davide Cappon, PhD

- Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Cognitive Neurology | Beth Israel Deaconess Medical Center | Harvard Medical School | Boston, MA, USA

dcappon@bidmc.harvard.edu

Boston, 23rd June 2019

axies that can be seen today make up j

Observable Universe

Observable Universe Planet Earth

Outline

• Measuring tCS effects with EEG

- Measuring effects outside the motor cortex
- Measuring focality of tCS interventions

• Basics of EEG

- EEG signal: features and opportunities
- > Analysis (ERP,Power, ...
- Experimental example of EEG-tCS combination
- Beyond EEG
 - ➤ TMS-EEG recording

Corticospinal excitability as an index of Brain excitability

Applied to tCS: limitation for online recording, only after effects

Measuring tCS effects without EEG

First evidence of tDCS after effect from **Nitsche and Paulus, 2000** Changes in cortical excitability assessed using TMS-EMG

tDCS effect on corticospinal excitability:Online and Offline effects

Santarnecchi et al., 2014

tDCS Effects on the motor cortex: pre/during/post

Are we stimulating the motor cortex?

Kuo et al., 2013

Multifactorial model

BEFORE

DURING

AFTER

Targeting Optimization

Where to stimulate? Determine target site & device position/orientation for stimulation based on...

functional localizer

source localization

individual gyral anatomy

local strength of electric field

local direction of current flow

When to stimulate? Determine target onset/time window relative to task or spontaneous event for stimulation based on...

induced power

latency of evoked responses

oscillatory phase

MMM

oscillatory power

occurrence of specific events

How to stimulate? Determine specfic parameters for stimulation such as...

stimulation intensity

stimulation frequency

pulse/wave form

polarity

Open questions..

• the effect of tCS on Non-Motor regions?

 distant effects and changes in the interplay between regions (connectivity) → Network effects?

 the Online effects of tCS on brain activity other than "excitability"?

Useful information to define tCS parameters and increase efficacy of interventions

Electroencephalography

1875: Richard Caton (1842-1926) measured currents in between the cortical surface and the skull, in dogs and monkeys

1929: Hans Berger (1873-1941) first EEG in humans (his young son), description of alpha and beta waves

1950s. Grey Walter (1910 – 1977). Invention of topographic EEG maps.

Electroencephalography

Where does the signal come from?

•Signals stem from *synchronous activity of large (~1000s) groups of neurons* close to each other and exhibiting similar patterns of activity

•Most of the signal generated by *pyramidal neurons in the cortex* (parallel to each other, oriented perpendicular to the surface)

•EEG measures *synaptic currents*, not action potentials (currents flow in opposite directions and cancel out!)

Electroencephalography

Current

Primary intracellular currents give rise to volume currents and a magnetic field

Pros and cons of EEG

EEG recording and analysis

EEG recording

- International 10-20 system
- Left side: odd numbers
- Right side: even numbers

High-Density EEG (64-256 Channels)

 Numbers increase from the hemispheric line towards the edges. Letter indicates brain regions (lobes).

EEG recording

- EEG records potential differences at the scalp using a set of active electrodes and a reference
- The ground electrode is important to eliminate noise from the amplifier circuit
- Potential differences are then amplified

- The representation of the EEG channels is referred to as a montage
 - Unipolar/Referential ⇒ potential difference between electrode and designated reference
 - Bipolar ⇒ represents difference between adjacent electrodes (e.g. ECG, EOG)

EEG recording

1. SPONTANEOUS

- Meaningful data with ~5' of recording
- Eyes open/closed

2. EVOKED Trial 1 2 Ö Trial 2 Trial N S \sim TMS-EEG

Well known Evoked Response Potential (ERP)(P300, N100, ..)

EEG analysis

From ERPs to Waveform

Time domain: -> when do things (amplitudes) happen?

Frequency domain (spectral):

-> magnitudes and frequencies of waves- no time information.

Time-frequency (wavelet analysis): -> when do which frequencies occur?

EEG features

Time domain Analysis

Event Relate Potentials ERPs

Advantages: computationally simple

Example of auditory evoked potentials

Frequency Domain Analysis (EEG)

How to disentangle oscillations Jean Joseph Fourier (1768–1830):

"An arbitrary function, continuous or with discontinuities, de ned in a finite interval by an arbitrarily capricious graph can always be expressed as a sum of sinusoids".

Time- Frequency Domain Analysis (EEG)

Connectivity Analysis (EEG)

Connectivity based on...

.Phase (eg. phase-slope index).Power (eg. coherence).Cross-frequency coupling

Connectivity Analysis (EEG)

Connectivity Analysis (EEG)

А

Advantages of tCS + EEG

 Understanding the role of brain oscillations in both <u>motor and non-</u> <u>motor regions</u>, in both the <u>healthy and pathological brain</u>

•Measure both local and distant effects.

 Guide tCS intervention on the basis of and online/offline monitoring of brain states.

How can tCS + EEG be implemented?

tCS + EEG approaches

tCS and EEG: variables

Choose Parameters

Guided with resp	ect to a brain state			
Input Time				
Frequency	Standard EEG Guided			
Intensity	Guided			

Local/Network Effects

Output Location

· Selected sensors or sources

· All sensors (topography)

· All sources (tomography)

EEG Output Measures

Analysis	Mechanisms
Amplitude e.g., ERP, GMFA	Local or global excitation/inhibition
Power of each frequency e.g., ERS/ERD	Local or global synchronization
Power as a function of time & frequency e.g., ERSP	Intrinsic properties e.g., Resonant frequency
 Correlation Coherence Synchrony Phase-amplitude cross- frequency coupling 	Functional connectivity e.g., Amplitude, frequency and phase coupling between two or more signals
Directed-transfer function Partial directed coherence	Directed functional connectivity e.g., Information flow

Output Time

Relative to input time

Relative to a brain state

EEG-Guided tCS: Location

Faria et al., 2012

EEG evaluation of a patient with Continuous spike-wave discharges during slow-wave sleep allowed identification of an epileptogenic focus.

Cathodal tDCS over the focus resulted in a significant decrease in interictal spikes.

EEG-Guided tCS: Stimulation Parameters (Frequency, phase, etc.)

Zahele et al., 2012

- **tACS** on the occipital cortex at individual alpha frequency
- **Resting EEG** → increase in alpha in parieto-central electrodes, no effects on surrounding frequencies

EEG-Guided tCS: Stimulation Parameters (Frequency, phase, etc.)

EEG-Guided tCS: Stimulation Parameters (Frequency, phase, etc.)

Phase

Causal relationship between phase and perception

Neuling et al., 2012: Used alpha-tDCS, the timing of the stimuli was arranged relative to the α-tDCS to present the stimuli in specific phase bins.

Perception: Detection thresholds were dependent on the phase of oscillation entrained by alpha tDCS. EEG rest: Alpha power was enhanced after alpha tDCS

А detection. detection hearing pre-EEG post-EEG task & o-tDCS threshold task. 3 min 3 x 7 min 3 min 7 min time В a-fDCS 180° 360° 0° voltage time auditory noise and signal sound pressure time. С 100λ bdetection rate [%] 50 -a 0 3 $\mathbf{5}$ 2 6 0

stimulus intensity

Neuling et al., 2012

Choose Parameters

Frequency Standard EEG Guided

Input Time

Guided with respect to a brain state

Local/Network Effects

Output Location

· Selected sensors or sources

- · All sensors (topography)
- All sources (tomography)

EEG Output Measures

Analysis	Mechanisms
Amplitude e.g., ERP, GMFA	Local or global excitation/inhibition
Power of each frequency e.g., ERS/ERD	Local or global synchronization
Power as a function of time & frequency e.g., ERSP	Intrinsic properties e.g., Resonant frequency
 Correlation Coherence Synchrony Phase-amplitude cross- frequency coupling 	Functional connectivity e.g., Amplitude, frequency and phase coupling between two or more signals
Directed-transfer function Partial directed coherence	Directed functional connectivity e.g., Information flow

Output Time

Relative to input time

Relative to a brain state

State dependency: Eyes Open vs. Eyes Closed

Neuling et al., 2013

State-Trait dependency

frontiers in SYSTEMS NEUROSCIENCE

published: 24 February 2014 doi: 10.3389/fnsys.2014.00025

Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation

Beatrix Krause* and Roi Cohen Kadosh

Department of Experimental Psychology, University of Oxford, Oxford, UK

Choose Parameters

Input Location	
Anatomically guided	Scalp landmark Brain atlas MRI, DTI
Functionally guided	fMRI TMS EEG

tES Input Parameters

Local/Network Effects

Output Location

Selected sensors or sources

- All sensors (topography)
- · All sources (tomography)

EEG Output Measures

Analysis	Mechanisms
Amplitude e.g., ERP, GMFA	Local or global excitation/inhibition
Power of each frequency e.g., ERS/ERD	Local or global synchronization
Power as a function of time & frequency e.g., ERSP	Intrinsic properties e.g., Resonant frequency
 Correlation Coherence Synchrony Phase-amplitude cross- frequency coupling 	Functional connectivity e.g., Amplitude, frequency and phase coupling between two or more signals
Directed-transfer function Partial directed coherence	Directed functional connectivity e.g., Information flow

Output Time

Relative to input time

Relative to a brain state

Closed-Loop Diagram

Closed-Loop Studies in Animal

Closed-Loop Studies in human sleep

Closed-Loop Studies in human sleep

Closed-Loop Studies in human sleep

Choose Parameters

Input LocationAnatomically
guidedScalp landmark
Brain atlas
MRI, DTIFunctionally
guidedfMRI
TMS
EEG**tES Input Parameters**

Local/Network Effects

Output Location

Selected sensors or sources

- · All sensors (topography)
- All sources (tomography)

EEG Output Measures

Mechanisms
Local or global excitation/inhibition
Local or global synchronization
Intrinsic properties e.g., Resonant frequency
Functional connectivity e.g., Amplitude, frequency and phase coupling between two or more signals
Directed functional connectivity

Output Time

Relative to input time

Relative to a brain state

Output Measures: Power/Amplitude - Local effects

Jacobson et al., 2012

- Anodal tDCS on right Inferior Frontal Gyrus, Cathode on OFC
- Offline approach, tDCS + task, EEG before/after

Decrease in Theta power after tDCS

Output Measures: Power/Amplitude - Distant effect

Occipito-Parietal Electrodes...

and alpha bands in posterior reads after anodal vs cathodal to es-

- Increased Theta and Alpha power after Anodal tDCS
 - Decreased Alpha power after Cathodal tDCS

Output: Connectivity

• 10' of anodal tDCS over M1

Polania et al., 2011

- Cathode on the contralateral Forehead
- 62 Channels EEG recording Before & After, Resting & Task
- **Output** → Connectivity metrics (Synchronization Likelihood) in directed and undirected graphs, for each frequency band.

Task PRE – Task POST , High Gamma @ 60-90Hz

tDCS Increases connectivity between motor, premotor and suppl. motor areas.

Output: Connectivity

- tDCS Increases connectivity between left motor, premotor and suppl. motor areas.
- tDCS **Decreases** interhemispheric connectivity in High-Gamma during task.

Other multimodal approaches?

•<u>tCS + TMS-EMG</u>

- •tCS + EEG (Resting ERPs)
- •tCS + fMRI
- •tCS + NIRS

•....tCS + TMS-EEG ?

TMS-EEG

TMS-EEG

TMS-EEG

Santarnecchi et al. 2016, SPJ

TMS-EEG to investigate local and distant tDCS effects

Romero Lauro et al., 2014

- 14 right-handed participants
- 0.75mA for 15' (anodal tDCS) + Sham
- 60 Channels EEG
- Masking Noise for TMS click

Output: TMS-Evoked Potentials (TEP) as a cortical

activity/reactivity measure Global Excitability Index: Global Mean Field Power (GFMP) Local Excitability Index: Local Mean Field Power (LMFP) over 6 different clusters of electrodes, left/right Frontal-Temporal-Parietal.

3 Time windows: 0-50ms, 50-100ms, 100-150ms

TMS-EEG to investigate local and distant tDCS effects

Fig. 2 – Panel A (upper row) shows the Grand Average of GMFP computed by averaging the GMFPs calculated for each subject in the three experimental conditions (pre tDCS = blue trace \pm SE; during tDCS = red trace \pm SE; post tDCS = green trace \pm SE). The lower row of Panel A represents the mean topographies computed in correspondence of the local maxima for each of the three time windows (0–50 msec = light gray, 50–100 msec = gray, 100–150 msec = dark gray) across the 14 study participants (see also Fig. 1). Panel B shows bar histograms representing the mean values \pm SE of the integrated GMFP in the three time windows of interest (0–50 msec = light gray, 50–100 msec = ash, 100–150 msec = graphite) for each experimental condition.

TMS-EEG to investigate local and distant tDCS effects

Left Frontal **Right Frontal** -1,8 r**1,8**, \mathcal{H} * * uring . During 2 0 - 50 mee 50 - 100 maec 0 - 50 mee 50 - 100 marc. 100 - 150 maec 100 - 150 maec Left Temporal **Right Temporal** 1,8-1.8** Nutrig During Ĕ. 0 - 50 msec 50 - 100 mage 100 - 150 meet 0 - 50 maec 100 - 150 meet 50 - 100 meet Left Parietal 중 풍 **Right Parietal** * * -1,8 r1,8, TMS IDCS uring Ę. 100 - 150 marc 0 - 50 meet 50 - 100 marci 0 - 50 matc 50 - 100 meet 100 - 150 masc

Local Mean Field Potential as an index of distant effects

Effects are (i) mostly in the 0-50ms window, which is expression of interregional monosynaptic connections; (ii) exclusively in the POST tDCS

> **ONLINE tDCS** \rightarrow unclear **OFFLINE tDCS** \rightarrow more specific, network-based effects

Technical challenges

EEG during tDCS

30 40 50 60 time in ms 70

20

0

10

EEG during tACS

Moving Average + Principal Component Analysis to Capture and eliminate the artifact (?)

Take home

- Understand of Motor <u>and non-Motor</u> tCS effects
- Capture **Distant effects** other than cortical excitability (e.g. Power, Coherence, Connectivity)
- Guide tCS interventions (*closed loop*, etc.)
- Interact with complex dynamics (e.g. CFC, phaserelated processing)

Thank you for your attention

dcappon@bidmc.harvard.edu